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ABSTRACT

L-(+)-Noviose, the sugar component of the antibiotic novobiocin, was synthesized from readily available non-carbohydrate starting materials
relying on stoichiometric and asymmetric processes by two independent methods, comprising six and nine steps, in 27 and 20% overall
yields, respectively.

L-(+)-Noviose (1) is the sugar component of novobiocin (2)
and coumermycin (3), two naturally occurring coumarin
glycosides originally produced from a number ofStrepto-
mycesspecies (Figure 1).1 Known for its antibiotic properties
for many years, novobiocin has elicited considerable interest
as a potential anticancer agent recently, due to its inhibitory
effect on Hsp-90 (heat shock protein),2 an important chap-
erone protein in a variety of physiologically important

processes.3 The relevance of coumarin antibiotics as inhibi-
tors of DNA gyrase and topoisomerase IV has been amply
documented.4

Although there are nearly 10 reported syntheses of (-)-
or (+)-noviose, dating as far back as 1964,5 the majority of
these utilize carbohydrate precursors as starting materials that
contain the C2-C3cis-diol group at the outset.5a-f,i-k As
such, the main challenge becomes the manipulation of
existing functional groups in the starting aldose carbon
framework by chain extension, cleavage, branching, and
hydroxyl protection/deprotection protocols to achieve the
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desired substitution and stereochemical pattern in the in-
tended noviose. A chemoenzymatic route to unnatural (-)-
noviose starts withmeso-2,2-dimethylcyclopent-4-ene-1,3-
diol which is desymmetrized via the monoacetate.5g In the
most recent synthesis, (-)-pantolactone is utilized as a
starting chiron already containing agem-dimethyl substitution
and the correctly configured C4 hydroxyl group of (-)-
noviose.5a

In spite of these diverse approaches, the practical synthesis
of noviose merits further attention especially involving
principles of asymmetric C-C bond formation and catalysis
from readily available non-carbohydrate starting materials.
We describe herein two alternative and expedient routes to
(-)- or (+)-noviose that can be adapted to the synthesis of
unnatural analogues (Schemes 1-3). In both approaches,
protection/deprotection manipulations are circumvented.

Central to the first approach (Scheme 1) is the enantiose-
lective catalytic desymmetrization of the readily available

2,2-dimethyl-1,3-cyclopentadione4.6 Initially, stoichiometric
(S)-B-Me-oxazaborolidine [(S)-B-Me-CBS,A]7 proved to be
the requisite reagent in combination with equimolar BH3-

N,N-diethylaniline complex (DEANB) at 0°C in THF for
10 min, providing the desired (R)-alcohol5 (96% ee)8 in
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Figure 1. Structure ofL-(+)-noviose and of antibiotics novobiocin
and coumermycin A1.

Scheme 1. Synthesis of Unsaturated Lactone8

Scheme 2. Alternative Synthesis of Unsaturated Lactone8
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78% yield (Scheme 1).9 Substoichiometric (50 mol %) or
catalytic (20 mol %) (S)-B-Me-CBS was ineffective, often
leading to non-reproducible enantioselectivity levels. Re-
cently, Corey and co-workers reported the desymmetrization
of diketone 1 with 10 mol % of (S)-B-nBu-CBS (B) in
combination with catecholborane and in the presence ofN,N-
diethylaniline (DEA).10 In the presence of 20 mol % of
catalystA, catecholborane, and diethylaniline, ketone5 was
obtained in 70% yield and the same enantioselectivity as
reported by Corey (94%).11

Conversion to the methyl ether612 was followed by a
Sc(OTf)3-promoted Baeyer-Villiger reaction13 to give the
lactone7. A Saegusa oxidation14 on the preformed trimeth-
ylsilyl enol ketene intermediate in the presence of Pd(OAc)2

led the unsaturated lactone8 in 63% yield for three steps.

We also describe an alternative method to the lactone8
which relies on the venerable asymmetric Brown allylation
reaction15 (Scheme 2). Freshly distilled benzyl glyoxylate9
was converted to the desired homoallylic alcohol intermediate
in 72% yield and>92% ee following the Brown procedure15

with preformed (+)-allyldiisopinocampheylborane [(+)-
(Ipc)2BCH2CHdCH2]. O-Methylation with MeI in the pres-
ence of Ag2O in MeCN gave quantitatively the ether10.
Application of the recently reported isomerization16 of
terminal double bonds to the 2-propenyl equivalent in the
presence of 10 mol % of the second generation Grubbs’
catalystC and equimolar Et3N in refluxing methanol gave
11 as acis/transmixture in excellent yield even on a gram
scale.17 After reaction of11with MeMgBr, the resultinggem-
dimethyl tertiary alcohol was O-allylated to the diene12 by
treatment with allyl iodide and NaH in THF/DMPU in
excellent yield for the two steps.18 A ring closing metathesis
reaction in the presence of 5 mol % of Grubbs’ second
generation catalyst19 gave theR,â-unsaturated dihydropyran
13 in good yield. The metathesis reaction could be routinely
run on multiples of 100 mg scale at substrate concentration
of 1 mM. Next, we subjected the cyclic ether13 to an allylic
oxidation in the presence of pyridinium chlorochromate20 to
give the unsaturated lactone8 in satisfactory yield.

With the unsaturated lactone8 in hand, we were ready to
perform the final dihydroxylation/reduction sequence (Scheme
3). Surprisingly, direct dihydroxylation21 of lactone8 under
various conditions22 resulted in low recovery of the diol, in
contrast to several reports dealing with the dihydroxylation
of related analogues.23 We therefore decided to postpone the
dihydroxylation reaction until after the reduction of8 with
DIBALH to an anomeric mixture of lactol intermediates14.
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Scheme 3. Final Steps towardL-(+)-Noviose
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Gratifyingly, catalytic dihydroxylation of14 as a mixture
of lactol anomers, performed in the presence of 10-fold molar
excess of water, gave enantiopureL-(+)-noviose (1)in 55%
yield starting from8.24

In conclusion, we have described a combination of
catalytic and stoichiometric methods for two independent
syntheses of (+)-noviose that do not require protecting
groups. By means of a CBS-desymmetrization,L-(+)-noviose
1 was obtained in 27% overall yield and six steps from the
readily available dione4 on gram scale. In the second
approach,1 was synthesized in nine steps and 20% overall

yield. Noteworthy, Corey’s CBS and Brown’s reagents are
commercially available in both enantiomeric forms, allowing
the expedient syntheses ofL-(+)-noviose or its antipode.
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